Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9397, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658598

RESUMO

While philanthropic support for science has increased in the past decade, there is limited quantitative knowledge about the patterns that characterize it and the mechanisms that drive its distribution. Here, we map philanthropic funding to universities and research institutions based on IRS tax forms from 685,397 non-profit organizations. We identify nearly one million grants supporting institutions involved in science and higher education, finding that in volume and scope, philanthropy is a significant source of funds, reaching an amount that rivals some of the key federal agencies like the NSF and NIH. Our analysis also reveals that philanthropic funders tend to focus locally, indicating that criteria beyond research excellence play an important role in funding decisions, and that funding relationships are stable, i.e. once a grant-giving relationship begins, it tends to continue in time. Finally, we show that the bipartite funder-recipient network displays a highly overrepresented motif indicating that funders who share one recipient also share other recipients and we show that this motif contains predictive power for future funding relationships. We discuss the policy implications of our findings on inequality in science, scientific progress, and the role of quantitative approaches to philanthropy.


Assuntos
Obtenção de Fundos , Humanos , Organização do Financiamento , Ciência/economia , Universidades , Apoio à Pesquisa como Assunto/economia , Estados Unidos , Organizações sem Fins Lucrativos/economia
2.
medRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562711

RESUMO

Background: Health research that significantly impacts global clinical practice and policy is often published in high-impact factor (IF) medical journals. These outlets play a pivotal role in the worldwide dissemination of novel medical knowledge. However, researchers identifying as women and those affiliated with institutions in low- and middle-income countries (LMIC) have been largely underrepresented in high-IF journals across multiple fields of medicine. To evaluate disparities in gender and geographical representation among authors who have published in any of five top general medical journals, we conducted scientometric analyses using a large-scale dataset extracted from the New England Journal of Medicine (NEJM), Journal of the American Medical Association (JAMA), The British Medical Journal (BMJ), The Lancet, and Nature Medicine. Methods: Author metadata from all articles published in the selected journals between 2007 and 2022 were collected using the DimensionsAI platform. The Genderize.io API was then utilized to infer each author's likely gender based on their extracted first name. The World Bank country classification was used to map countries associated with researcher affiliations to the LMIC or the high-income country (HIC) category. We characterized the overall gender and country income category representation across the medical journals. In addition, we computed article-level diversity metrics and contrasted their distributions across the journals. Findings: We studied 151,536 authors across 49,764 articles published in five top medical journals, over a long period spanning 15 years. On average, approximately one-third (33.1%) of the authors of a given paper were inferred to be women; this result was consistent across the journals we studied. Further, 86.6% of the teams were exclusively composed of HIC authors; in contrast, only 3.9% were exclusively composed of LMIC authors. The probability of serving as the first or last author was significantly higher if the author was inferred to be a man (18.1% vs 16.8%, P < .01) or was affiliated with an institution in a HIC (16.9% vs 15.5%, P < .01). Our primary finding reveals that having a diverse team promotes further diversity, within the same dimension (i.e., gender or geography) and across dimensions. Notably, papers with at least one woman among the authors were more likely to also involve at least two LMIC authors (11.7% versus 10.4% in baseline, P < .001; based on inferred gender); conversely, papers with at least one LMIC author were more likely to also involve at least two women (49.4% versus 37.6%, P < .001; based on inferred gender). Conclusion: We provide a scientometric framework to assess authorship diversity. Our research suggests that the inclusiveness of high-impact medical journals is limited in terms of both gender and geography. We advocate for medical journals to adopt policies and practices that promote greater diversity and collaborative research. In addition, our findings offer a first step towards understanding the composition of teams conducting medical research globally and an opportunity for individual authors to reflect on their own collaborative research practices and possibilities to cultivate more diverse partnerships in their work.

3.
Proc Natl Acad Sci U S A ; 120(48): e2309378120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983494

RESUMO

The impact of a scientific publication is often measured by the number of citations it receives from the scientific community. However, citation count is susceptible to well-documented variations in citation practices across time and discipline, limiting our ability to compare different scientific achievements. Previous efforts to account for citation variations often rely on a priori discipline labels of papers, assuming that all papers in a discipline are identical in their subject matter. Here, we propose a network-based methodology to quantify the impact of an article by comparing it with locally comparable research, thereby eliminating the discipline label requirement. We show that the developed measure is not susceptible to discipline bias and follows a universal distribution for all articles published in different years, offering an unbiased indicator for impact across time and discipline. We then use the indicator to identify science-wide high impact research in the past half century and quantify its temporal production dynamics across disciplines, helping us identifying breakthroughs from diverse, smaller disciplines, such as geosciences, radiology, and optics, as opposed to citation-rich biomedical sciences. Our work provides insights into the evolution of science and paves a way for fair comparisons of the impact of diverse contributions across many fields.


Assuntos
Bibliometria , Fator de Impacto de Revistas , Viés , Logro
4.
Sci Rep ; 13(1): 18594, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903804

RESUMO

In the recent decade, we have seen major progress in quantifying the behaviors and the impact of scientists, resulting in a quantitative toolset capable of monitoring and predicting the career patterns of the profession. It is unclear, however, if this toolset applies to other creative domains beyond the sciences. In particular, while performance in the arts has long been difficult to quantify objectively, research suggests that professional networks and prestige of affiliations play a similar role to those observed in science, hence they can reveal patterns underlying successful careers. To test this hypothesis, here we focus on ballet, as it allows us to investigate in a quantitative fashion the interplay of individual performance, institutional prestige, and network effects. We analyze data on competition outcomes from 6363 ballet students affiliated with 1603 schools in the United States, who participated in the Youth America Grand Prix (YAGP) between 2000 and 2021. Through multiple logit models and matching experiments, we provide evidence that schools' strategic network position bridging between communities captures social prestige and predicts the placement of students into jobs in ballet companies. This work reveals the importance of institutional prestige on career success in ballet and showcases the potential of network science approaches to provide quantitative viewpoints for the professional development of careers beyond science.


Assuntos
Dança , Adolescente , Humanos , Estados Unidos , América
5.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33737396

RESUMO

The ability to map causal interactions underlying genetic control and cellular signaling has led to increasingly accurate models of the complex biochemical networks that regulate cellular function. These network models provide deep insights into the organization, dynamics, and function of biochemical systems: for example, by revealing genetic control pathways involved in disease. However, the traditional representation of biochemical networks as binary interaction graphs fails to accurately represent an important dynamical feature of these multivariate systems: some pathways propagate control signals much more effectively than do others. Such heterogeneity of interactions reflects canalization-the system is robust to dynamical interventions in redundant pathways but responsive to interventions in effective pathways. Here, we introduce the effective graph, a weighted graph that captures the nonlinear logical redundancy present in biochemical network regulation, signaling, and control. Using 78 experimentally validated models derived from systems biology, we demonstrate that 1) redundant pathways are prevalent in biological models of biochemical regulation, 2) the effective graph provides a probabilistic but precise characterization of multivariate dynamics in a causal graph form, and 3) the effective graph provides an accurate explanation of how dynamical perturbation and control signals, such as those induced by cancer drug therapies, propagate in biochemical pathways. Overall, our results indicate that the effective graph provides an enriched description of the structure and dynamics of networked multivariate causal interactions. We demonstrate that it improves explainability, prediction, and control of complex dynamical systems in general and biochemical regulation in particular.


Assuntos
Fenômenos Biológicos , Modelos Biológicos , Software , Redes Reguladoras de Genes , Redes e Vias Metabólicas , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 117(9): 4609-4616, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071248

RESUMO

There is extensive, yet fragmented, evidence of gender differences in academia suggesting that women are underrepresented in most scientific disciplines and publish fewer articles throughout a career, and their work acquires fewer citations. Here, we offer a comprehensive picture of longitudinal gender differences in performance through a bibliometric analysis of academic publishing careers by reconstructing the complete publication history of over 1.5 million gender-identified authors whose publishing career ended between 1955 and 2010, covering 83 countries and 13 disciplines. We find that, paradoxically, the increase of participation of women in science over the past 60 years was accompanied by an increase of gender differences in both productivity and impact. Most surprisingly, though, we uncover two gender invariants, finding that men and women publish at a comparable annual rate and have equivalent career-wise impact for the same size body of work. Finally, we demonstrate that differences in publishing career lengths and dropout rates explain a large portion of the reported career-wise differences in productivity and impact, although productivity differences still remain. This comprehensive picture of gender inequality in academia can help rephrase the conversation around the sustainability of women's careers in academia, with important consequences for institutions and policy makers.


Assuntos
Autoria , Mobilidade Ocupacional , Publicações Periódicas como Assunto/estatística & dados numéricos , Ciência/estatística & dados numéricos , Sexismo/estatística & dados numéricos , Recursos Humanos/estatística & dados numéricos , Sucesso Acadêmico , Adulto , Docentes/estatística & dados numéricos , Feminino , Humanos , Masculino , Matemática/estatística & dados numéricos , Pessoa de Meia-Idade , Pesquisadores/estatística & dados numéricos
9.
Sci Rep ; 9(1): 8574, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189888

RESUMO

Clustering is one of the most universal approaches for understanding complex data. A pivotal aspect of clustering analysis is quantitatively comparing clusterings; clustering comparison is the basis for many tasks such as clustering evaluation, consensus clustering, and tracking the temporal evolution of clusters. In particular, the extrinsic evaluation of clustering methods requires comparing the uncovered clusterings to planted clusterings or known metadata. Yet, as we demonstrate, existing clustering comparison measures have critical biases which undermine their usefulness, and no measure accommodates both overlapping and hierarchical clusterings. Here we unify the comparison of disjoint, overlapping, and hierarchically structured clusterings by proposing a new element-centric framework: elements are compared based on the relationships induced by the cluster structure, as opposed to the traditional cluster-centric philosophy. We demonstrate that, in contrast to standard clustering similarity measures, our framework does not suffer from critical biases and naturally provides unique insights into how the clusterings differ. We illustrate the strengths of our framework by revealing new insights into the organization of clusters in two applications: the improved classification of schizophrenia based on the overlapping and hierarchical community structure of fMRI brain networks, and the disentanglement of various social homophily factors in Facebook social networks. The universality of clustering suggests far-reaching impact of our framework throughout all areas of science.


Assuntos
Algoritmos , Modelos Teóricos , Análise por Conglomerados
10.
Front Physiol ; 9: 1046, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154728

RESUMO

Logical models offer a simple but powerful means to understand the complex dynamics of biochemical regulation, without the need to estimate kinetic parameters. However, even simple automata components can lead to collective dynamics that are computationally intractable when aggregated into networks. In previous work we demonstrated that automata network models of biochemical regulation are highly canalizing, whereby many variable states and their groupings are redundant (Marques-Pita and Rocha, 2013). The precise charting and measurement of such canalization simplifies these models, making even very large networks amenable to analysis. Moreover, canalization plays an important role in the control, robustness, modularity and criticality of Boolean network dynamics, especially those used to model biochemical regulation (Gates and Rocha, 2016; Gates et al., 2016; Manicka, 2017). Here we describe a new publicly-available Python package that provides the necessary tools to extract, measure, and visualize canalizing redundancy present in Boolean network models. It extracts the pathways most effective in controlling dynamics in these models, including their effective graph and dynamics canalizing map, as well as other tools to uncover minimum sets of control variables.

11.
Artif Life ; 22(4): 499-517, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27824498

RESUMO

Emergent individuals are often characterized with respect to their viability: their ability to maintain themselves and persist in variable environments. As such individuals interact with an environment, they undergo sequences of structural changes that correspond to their ontogenies. Ultimately, individuals that adapt to their environment, and increase their chances of survival, persist. This article provides an initial step towards a more formal treatment of these concepts. A network of possible ontogenies is uncovered by subjecting a model protocell to sequential perturbations and mapping the resulting structural configurations. The analysis of this network reveals trends in how the protocell can move between configurations, how its morphology changes, and how the role of the environment varies throughout. Viability is defined as expected life span given an initial configuration. This leads to two notions of adaptivity: a local adaptivity that addresses how viability changes in plastic transitions, and a global adaptivity that looks at longer-term tendencies for increased viability. To demonstrate how different protocell-environment pairings produce different patterns of ontogenic change, we generate and analyze a second ontogenic network for the same protocell in a different environment. Finally, the mechanisms of a minimal adaptive transition are analyzed, and it is shown that these rely on distributed spatial processes rather than an explicit regulatory mechanism. The combination of this model and analytical techniques provides a foundation for studying the emergence of viability, ontogeny, and adaptivity in more biologically realistic systems.


Assuntos
Células Artificiais , Modelos Biológicos , Evolução Biológica , Simulação por Computador
12.
Sci Rep ; 6: 24456, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27087469

RESUMO

The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics.


Assuntos
Modelos Biológicos , Motivos de Aminoácidos , Animais , Arabidopsis/anatomia & histologia , Ciclo Celular , Drosophila melanogaster/genética , Flores/anatomia & histologia , Dinâmica não Linear , Saccharomyces cerevisiae/citologia
13.
Artif Life ; 22(2): 153-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934090

RESUMO

We introduce a spatial model of concentration dynamics that supports the emergence of spatiotemporal inhomogeneities that engage in metabolism-boundary co-construction. These configurations exhibit disintegration following some perturbations, and self-repair in response to others. We define robustness as a viable configuration's tendency to return to its prior configuration in response to perturbations, and plasticity as a viable configuration's tendency to change to other viable configurations. These properties are demonstrated and quantified in the model, allowing us to map a space of viable configurations and their possible transitions. Combining robustness and plasticity provides a measure of viability as the average expected survival time under ongoing perturbation, and allows us to measure how viability is affected as the configuration undergoes transitions. The framework introduced here is independent of the specific model we used, and is applicable for quantifying robustness, plasticity, and viability in any computational model of artificial life that demonstrates the conditions for viability that we promote.


Assuntos
Simulação por Computador , Redes e Vias Metabólicas , Modelos Biológicos , Vida
14.
Artigo em Inglês | MEDLINE | ID: mdl-26764620

RESUMO

We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA